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Abstract

The paper describes a modified Von Hippel technique for determination of complex dielectric and magnetic
properties of materials, The technique uses least square fit to derive the scatter matrix parameters for

calibrating out internal reflection between the sample and the reflection measuring equipment. Least square
fit is also used to determine best values of p and E .

Introduction

The standard Von Hippel’s technique to determine

dielectric and magnetic properties of materials con-
sists of placinga sample of material in a transmis-

sion line usually coax or a waveguide backed by a
short and a shorted stub usually quarter wave long

and noting the change in the complex reflection co-
efficient between the empty line and the line con-

taining the samDle.

A considerable improvement in the accuracy of

this technique can be obtained if two simple proce–
dures are added. The first procedure calibrates out

internal reflections due to discontinuities within
the measurement system. The second procedure in-

volves the termination of the sample with a number of
different stubs or cavities to provide redundance in

measurements. Both of these procedures are carried

out in identical fashion and results are evaluated

by a least square fit.

System Calibration

Figure 1 illustrates the experimental setup.

The basic components are: reflection measuring

equipment such as a network analyzer or a slotted
line, a connecting network, a sample holder and a

terminating shorted stub or a cavity.

The essential concept involved in the system
calibration is to determine the scatter matrix pa-

rameters of the connecting network which can be used

to relate the measured reflection coefficient to the

true reflection coefficient.

The calibrating procedure consists of measuring
the reflection coefficients of an empty sample holder
by terminating it with a number of different shorted

stubs or cavities ranging in depth from zero (short)

to half a wavelength. To determine the scatter
matrix of the connecting network, a minimum of three
measurements are required and at least four or five
cavities should be used to provide the redundancy for
tile least square fit.

The scatter matrix is represented by

where the various parameters are explained in Figure
2.

Each i
th

measurement leads to a linear equation in
the form of

‘2i ‘1 + ‘li ‘2 + ‘3 = ai
(1)

where r , r
12

and r
3

are the three unknowns to be

determined by the least square fit.
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The above quantities are defined aa follows A.u< + (A.-a<) X + Y = O (3)

‘Ii =

P2i =

B=

d=
i

t=

‘3 =

a. =
1

complex reflection coefficient measured
with the ith cavity

-exp(2jf3(di+t))

2m/wavelength in the empty line or wave-

guide

lengthof the terminating i
th

shorting
stub or cavity

thickness of the sample

2

‘lr2+T

P1iP2i

Note that Eq. (1) is linear in r., r., and r., and

the procedure for the least squa~e C% be fo~d in
any standard textbook on engineering mathematical.
The only caution that must be exercised is to note
that these
S is given

s .

where X. =
1

equations are complex. The error residue

by

z x.x.*
1 11

~~denotes conjugate

‘2iri + ‘li ‘2 + r3 - ai

(2)

Partial differentiation of S with respect to the
conjugates of the three unknowns gives rise to

three simultaneous linear equations in rl, r2 and

‘3
which are the least square values and which can

be readily solved for the best values of the scatter
matrix.

If the optimum values are substituted in the

original equation, S/n where n is the number of
measurements, is a measure of self-consistency of

the measurements. A typical value of S/n with five
cavities should be less than 10-3, if measurements

are carried out with a network analyzer where re-
flection coefficient is determined to within + .1 dB—
and phase to within? .2°.

Measurements of Complex p and &

Sample measurements are carried out in exactly

the same way as the calibration measurements except
that the sample holder now contains the sample.

Since p and E are to be determined a minimum of

two measurements are required, but again the use of
four or five cavities will provide redundancy for

the least square fit.

By using standard transmission line equations,
it can be shown that each ith measurement nay be
expressed aa

LI

where A. =
1

P=0

0=
i

@i =

x=

Y=

T=

t=

Y’

n=

11

(l-Po/(l+Po))

true reflection coefficient (including

scatter matrix correction)

tan(j@i)

th
electrical length of the i stub or
cavity

T/q

TTI

tanh(–yt)

sample thickness

complex propagation constant of the

transmission line containing the sample.

complex characteristic impedance of
the transmission line containing the

sample divided by the characteristic
impedance of the empty line.

Equation 3 is linear in X and Y and the procedures

for finding the least square values of X and Y is

identical to that used to determine the scatter

matrix parameters.

To relate y and TI to P and E the following

relationships are used.

In the

In the

case of a coaxial air line (4)

u& = Y21B2
0

PIE = 112

60 = 2n/wavelength in air

case of a waveguide TEIO mode

p& =

v=

Bc =

.

@g =

$.2=

(6c2-Y2)/Bo2 (5)

m’/jBg

2r/cutoff wavelength

n/waveguide width

2Tr/wavelength in the empty waveguide

8g2+ 6C2
Note that equation (5) reduces to equation (4) if
Bc =0.
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Table I illustrates a typical measurement and

compares the results computed with and without least
square fit. The measurement was made in a coaxial

line at 3 GHz and involved a Teflon sample .256”

thick. It will be noted that the least square

results are considerably better than the results

which were obtained by averaging six non-redundant

measurements as evidenced by the value of u which

should be l+jO. The very small residues in the

least square data provide a very high confidence
factor that the redundant measurements are self-

consistent and the results are accurate within a
fraction of a percent.

The table also illustrates a fundamental diffi-

culty with this technique in measuring losses in a

material with loss tangents of less than 1%. Very

low losses are best measured in resonant cavities by
changes in the loaded and unloaded Q.

TABLE I

ILLUSTRATION OF A TYPICAL MEASUREMENT

Sample: Teflon .256t’ thick k = 10.00 cm

RAW DATA

Cavity Calibration Sample
No In dB Deg. dB Deg.

1 .000 18.00 180.0 18.00 177,1
2 .102 18.00 160.4 18.02 152.9
3 1.575 17.85 -108.2 17.87 -115.1
4 2.559 17.85 70.1 17.73 28.2

NON-REDUNDANT RESULTS

Calibration Utilized Cavities 1, 3 and 4

Cavity Mu Epselon
Combination Real Imag Real Imag

1-2 1.065 -.019 1.600 .338
1-3 1.061 -.015 1.948 ,033
1-4 1.059 -.015 2.133 -.005
2-3 1.033 .009 2.038 -.045
2-4 1.025 .001 2.142 -.011
3-4 .998 -.002 2.149 -.008

Average 1.040 -.007 2.002 .050
St. Dev. ,026 .011 .212 ,143

LRAST SQUARE FIT RESULTS

1.001 “.001 1.999 .003

Residues: Calib. .00007 Sample .00003

Conclusions
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The introduction of the scatter matrix compen-

sates for internal reflections caused by such items
as waveguide junctions, waveguide to coax adaptors

and coax connectors between the network analyzer and
the sample. Multiplicity of measurements increases

accuracy and minimizes experimental errors. Accu-

racies in excess of 99.5% can be readily achieved

with routine measurements.
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