DETERMINATION OF COMPLEX DIELECTRIC AND MAGNETIC PROPERTIES
OF MATERIALS
USING A LEAST SQUARE FIT METHOD BASED ON VON HIPPEL'S TECHNIQUE

S. Weisbrod, L. A. Morgan, L. R. Hughes
Teledyne Micronetics
7155 Mission Gorge Road
San Diego, California 92120

Abstract

The paper describes a modified Von Hippel technique for determination of complex dielectric and magnetic

properties of materials.
fit is also used to determine best values of 4 and €,
Introduction

The standard Von Hippel's technique to determine
dielectric and magnetic properties of materials con-
sists of placing a sample of material in a transmis-
sion line usually coax or a waveguide backed by a
short and a shorted stub usually quarter wave long
and noting the change in the complex reflection co-
efficient between the empty line and the line con-
taining the sample.

A considerable improvement in the accuracy of
this technique can be obtained if two simple proce-
dures are added. The first procedure calibrates out
internal reflections due to discontinuities within
the measurement system. The second procedure in-
volves the termination of the sample with a number of
different stubs or cavities to provide redundance in
measurements. Both of these procedures are carried
out in identical fashion and results are evaluated
by a least square fit.

System Calibration

Figure 1 illustrates the experimental setup.
The basic components are: reflection measuring
equipment such as a network analyzer or a slotted
line, a connecting network, a sample holder and a
terminating shorted stub or a cavity.

The essential concept involved in the system
calibration is to determine the scatter matrix pa-
rameters of the connecting network which can be used
to relate the measured reflection coefficient to the
true reflection coefficient.

The calibrating procedure consists of measuring
the reflection coefficients of an empty sample holder
by terminating it with a number of different shorted
stubs or cavities ranging in depth from zero (short)
to half a wavelength. To determine the scatter
matrix of the connecting network, a minimum of three
measurements are required and at least four or five
cavities should be used to provide the redundancy for
the least square fit.

The scatter matrix is represented by
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The technique uses least square fit to derive the scatter matrix parameters for
calibrating out internal reflection between the sample and the reflection measuring equipment.

Least square

where the various parameters are explained in Figure
2.

Each ith measurement leads to a linear equation in
the form of
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3 are the three unknowns to be

determined by the least square fit.
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The above quantities are defined as follows

p,. = complex reflection coefficient measured

11 with the i™" cavity
Pyy = —exp(ZJB(di+t))
B = 2rm/wavelength in the empty line or wave-
guide
. R . th .
di = lengthof the terminating i~ shorting
stub or cavity
t = thickness of the sample
2
Ty = rlr2+T
a5 T P3Py

Note that Eq. (1) is linear in r., r,, and r,, and
the procedure for the least squa¥e can be foimd in
any standard textbook on engineering mathematics.
The only caution that must be exercised is to note
that these equations are complex. The error residue
S is given by

S = 2
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*denotes conjugate
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where Xi = pZi
Partial differentiation of S with respect to the

conjugates of the three unknowns gives rise to
three simultaneous linear equations in rys T,

r, which are the least square values and which can
bé readily solved for the best values of the scatter
matrix,

and

If the optimum values are substituted in the
original equation, S/n where n is the number of
measurements, is a measure of self-comsistency of
the measurements. A typical value of S/n with five
cavities should be less than 10-3, if measurements
are carried out with a network analyzer where re-
flection coefficient is determined to within + .1 dB
and phase to within + .2°.

Measurements of Complex | and €

Sample measurements are carried out in exactly
the same way as the calibration measurements except
that the sample holder now contains the sample.

Since p and € are to be determined a minimum of
twvo measurements are required, but again the use of
four or five cavities will provide redundancy for
the least square fit.

By using standard transmission line equations,
it can be shown that each ith measurement may be
expressed as

122

A0, + (Ai—oi) X+Y=0 (3)

where A, = (l—po/(l+po))

p, = true reflection coefficient (including
scatter matrix correction)

o, = tan(j¢;)

. . th

¢i = electrical length of the 1 stub or
cavity

X = T/n

Y = n

T = tanh(-Yt)

t = sample thickness

Y = complex propagation constant of the
tranmission line containing the sample.

n = complex characteristic impedance of

the transmission line containing the
sample divided by the characteristic
impedance of the empty line.

Equation 3 is linear in X and Y and the procedures
for finding the least square values of X and Y is
identical to that used to determine the scatter
matrix parameters.

To relate Y and N to U and € the following
relationships are used.

In the case of a coaxial air line (4)
2,, 2
ve Y°/8,
2
we = n
Bo = 2m/wavelength in air
In the case of a waveguide TElo mode
2.2 2
ne = (B "-Y)/B, (5)
= ny/3B
H Y/3 g
BC = 27/cutoff wavelength
= T7/waveguide width
Bg = 2T/wavelength in the empty waveguide
2 2 2
Bo = Bg + BC

Note that equation (5) reduces to equation (4) if
B = 0.
c



Table I illustrates a typical measurement and
compares the results computed with and without least
square fit. The measurement was made in a coaxial
line at 3 GHz and involved a Teflon sample .256"
thick. It will be noted that the least square
results are considerably better than the results
which were obtained by averaging six non-redundant
measurements as evidenced by the value of Y which
should be 1+j0. The very small residues in the
least square data provide a very high confidence
factor that the redundant measurements are self-
consistent and the results are accurate within a
fraction of a percent.

The table also illustrates a fundamental diffi-
culty with this technique in measuring losses in a
material with loss tangents of less than 1%. Very
low losses are best measured in resonant cavities by
changes in the loaded and unloaded Q.

TABLE I

ILLUSTRATION OF A TYPICAL MEASUREMENT

Sample; Teflon ,256" thick A = 10,00 cm
RAW DATA
Cavity Calibration Sample
No In dB Deg. dB Deg.
1 .000 18.00 180.0 18.00 177,11
2,102 18.00 160.4 18.02 152.9
3 1.575 17.85 -108.2 17.87 -115,1
4 2.559 17.85 70.1 17.73 28.2
NON-REDUNDANT RESULTS
Calibration Utilized Cavities 1, 3 and 4
Cavity Mu Epselon
Combination Real Imag Real Imag
1-2 1.065 =.019 1.600 .338
1-3 1.061 ~.015 1.948 ,033
1-4 1.059 ~.015 2.133 =~.005
2-3 1.033 .009 2,038 «~,045
2-4 1.025 .001 2,142 ~,011
3-4 .998 ~.002 2.149 ~,008
Average 1.040 ~.007 2.002 .050
St. Dev, 026,011 212,143
LEAST SQUARE FIT RESULTS
1.001 ~.001 1.999 ,003
Residues: Calib. .00007 Sample ,00003
Conclusions

The introduction of the scatter matrix compen-
sates for internal reflections caused by such items
as waveguide junctions, waveguide to coax adaptors
and coax connectors between the network analyzer and
the sample. Multiplicity of measurements increases
accuracy and minimizes experimental errors. Accu-
racies in excess of 99.5% can be readily achieved
with routine measurements.
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